7 ข้อเท็จจริงควรรู้เกี่ยวกับลิเทียมและอุตสาหกรรมแบตเตอรี่
จากข่าวการค้นพบแหล่งแร่ลิเทียมในประเทศไทยในช่วงที่ผ่านมา ทำให้คนไทยจำนวนมากสนใจ และอาจเกิดข้อสงสัยว่าการค้นพบครั้งนี้จะส่งผลอย่างไรต่ออุตสาหกรรมแบตเตอรี่และยานยนต์ไฟฟ้าของไทยหรือไม่ อย่างไร
ศูนย์เทคโนโลยีพลังงานแห่งชาติ (ENTEC) สำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ (สวทช.) ได้ให้ข้อมูลเบื้องต้นที่สำคัญโดยสังเขป ดังนี้
1 ) ลิเทียมเป็นธาตุหลักที่ใช้ในการผลิตแบตเตอรี่ลิเทียมไอออน (Li-ion battery) ซึ่งเป็นแบตเตอรี่ที่นิยมใช้งานกันอยู่ในปัจจุบัน ทั้งในยานยนต์ไฟฟ้า โทรศัพท์เคลื่อนที่ คอมพิวเตอร์โน้ตบุ๊ก รวมทั้งอุปกรณ์อิเล็กทรอนิกส์ต่างๆ หลายประเภท ทั้งนี้ลิเทียมถูกใช้งานในรูปของสารประกอบ โดยสารประกอบลิเทียมเป็นองค์ประกอบหลักของแคโทดในเซลล์แบตเตอรี่
2 ) สารประกอบของลิเทียมที่ใช้ทำแคโทดมีหลายชนิดขึ้นอยู่กับชนิดของแบตเตอรี่ ที่น่ารู้จัก เช่น แบตเตอรี่ชนิด NMC ใช้สารประกอบ LiNiMnCoO2 ซึ่งมีธาตุลิเทียม นิกเกิล แมงกานีส และโคบอลต์ในรูปของออกไซด์ หรือแบตเตอรรี่ชนิด LFP ใช้สารประกอบ LiFePO4 ซึ่งมีธาตุลิเทียม เหล็ก และฟอสฟอรัสในรูปของออกไซด์ เป็นต้น จะเห็นว่าในการผลิตแบตเตอรี่จำเป็นต้องใช้ธาตุหลายชนิดเพื่อผลิตขั้วแคโทด นอกจากนี้ชิ้นส่วนอื่นๆ ในแบตเตอรี่ยังจำเป็นต้องใช้ธาตุอื่น ๆ ด้วยเช่นกัน ไม่ว่าขั้วแอโนด สารอิเล็กโทรไลต์ เมมเบรน วัสดุหุ้มเซลล์ ขั้วนำไฟฟ้าทั้งฝั่งแคโทดและแอโนด รวมทั้งส่วนประกอบอิเล็กทรอนิกส์ต่างๆ นั่นคือ ธาตุลิเทียมเพียงอย่างเดียวยังไม่สามารถผลิตออกมาเป็นแบตเตอรี่ที่สมบูรณ์ได้
3 ) การผลิตลิเทียมในปัจจุบันมาจากสองรูปแบบหลัก ได้แก่ น้ำเกลือ (brine) และ หินแร่ (hard rock) โดยน้ำเกลือลิเทียมพบมากในแถบอเมริกาใต้ เช่น ชิลี โบลิเวีย อาร์เจนตินา และสาธารณรัฐประชาชนจีน ส่วนหินแร่พบกระจายอยู่ทั่วไปในรูปของสโปดูมีน (spodumene) และหินแร่อื่นๆ เช่น เลพิโดไลต์ (lepidolite) ทั้งนี้ในประเทศไทยมีการพบแร่เลพิโดไลต์ (lepidolite) ในหินเพกมาไทต์ (pegmatite) โดยแร่ดังกล่าวมีความสมบูรณ์ของลิเทียมหรือเกรดลิเทียมออกไซด์เฉลี่ย 0.45%
4 ) ประเด็นสำคัญในการผลิตแบตเตอรี่ลิเทียมไออนคือ จะต้องผลิตธาตุลิเทียมที่มีความบริสุทธิ์ในปริมาณที่สูงเพียงพอ และลิเทียมต้องอยู่ในรูปสารประกอบที่เหมาะสมสำหรับการผลิตแบตเตอรี่ชนิดที่ต้องการ เช่น การผลิตแบตเตอรี่ชนิด NMC ใช้ลิเทียมไฮดรอกไซด์ และการผลิตแบตเตอรี่ชนิด LFP ใช้ลิเทียมคาร์บอเนต เป็นต้น ดังนั้น จึงยังมีข้อพิจารณาสำคัญว่าในกระบวนการถลุงและแต่งแร่ที่ค้นพบนี้จะได้ธาตุลิเทียมและสารประกอบที่ต้องการมีคุณสมบัติทางเทคนิคที่เหมาะสมและปริมาณมากเพียงพอแก่การผลิตแบตเตอรี่หรือไม่
5 ) อีกปัจจัยที่ต้องคำนึงถึง ได้แก่ ระยะเวลาที่ต้องใช้ในการสร้างเหมืองและระยะเวลาที่ใช้ในการปรับปรุงกระบวนการผลิตแร่ ซึ่งอยู่ในช่วงเวลาราว 5-10 ปี อันเป็นระยะเวลาที่นานกว่าการสร้างโรงงานผลิตแบตเตอรี่หรือโรงงานผลิตยานยนต์ไฟฟ้า
6 ) นอกจากการผลิตลิเทียมจากแหล่งแร่ใหม่ๆ แล้ว การรีไซเคิลลิเทียมจากแบตเตอรี่ใช้แล้วก็เป็นอีกทางเลือกหนึ่งที่ได้รับความสนใจเป็นอย่างมาก ทั้งยังสอดคล้องกับนโยบายเศรษฐกิจหมุนเวียนเป็นอย่างดี
7 ) อุตสาหกรรมแบตเตอรี่มีห่วงโซ่คุณค่าที่ยาวและค่อนข้างซับซ้อน ดังนั้นประเทศไทยจึงมีโอกาสที่จะเข้าไปอยู่ในห่วงโซ่นี้ได้ในหลายจุดหากมีการให้ความสำคัญ ดำเนินการศึกษาและส่งเสริมในทิศทางนี้อย่างจริงจัง ทั้งนี้พึงระลึกว่าอุตสาหกรรมแบตเตอรี่สามารถเป็น New S-curve ได้ด้วยตนเองโดยไม่จำเป็นต้องอิงกับยานยนต์ไฟฟ้า เนื่องจากการใช้งานแบตเตอรี่มีความหลากหลายไม่จำเพาะแต่เพียงยานยนต์ไฟฟ้าเท่านั้น
เรียบเรียงโดย สุมิตรา จรสโรจน์กุลและพิมพา ลิ้มทองกุล ศูนย์เทคโนโลยีพลังงานแห่งชาติ สวทช
อ้างอิงจาก Gielen, D. and M. Lyons (2022), Critical Materials for the Energy Transition: Lithium, International Renewable Energy Agency, Abu Dhabi.
-
สุดปัง! วิจัย มข. “แบตเตอรี่ลิเธียมไอออนจากแกลบ-ขยะโซลาร์เซลล์” คว้ารางวัลนวัตกรรมแห่งชาติ ประจำปี 2566
- Arun Plus ผนึก CATL ตั้งโรงงานแบตเตอรี่ Cell-To-Pack ในไทย เดินเครื่องผลิตปี'67
บทความยอดนิยม 10 อันดับ
- ยอดขายรถยนต์ใน 2566
- คาร์บอนเครดิต (Carbon Credit) คืออะไร ทำไมถึงต้องเร่งสร้างคาร์บอนเครดิต
- FTA ไทย มีกี่ประเทศ พอหรือไม่ ทำไมต้องคิดเรื่อง CPTPP
- 10 ตัวอย่างที่นำ 5G มาใช้งานได้อย่างน่าสนใจและประสบผลสำเร็จ
- อบรมรถยนต์ไฟฟ้า 2566 ฟรี
- เทคโนโลยีแห่ง G สู่ 5G เครือข่ายไร้สาย
- กฎหมาย ปล่องระบาย อากาศ 2565
- ยอดขายโทรศัพท์ 2023 ทั่วโลก
- GAC AION Thailand
- เปิดโผ 8 อุตสาหกรรมเด่นเติบโตสูงในปี 2566
อัปเดตข่าวทุกวันที่นี่ www.mreport.co.th
Line / Facebook / Twitter / YouTube @MreportTH